Numerical Solution of Nonlinear Schrödinger Equation with Neumann Boundary Conditions Using Quintic B-Spline Galerkin Method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

numerical solution of the rosenau equation using quintic collocation b-spline method

in this paper , the quintic b-spline collocation scheme is employed to approximate numerical solution of the kdv-like rosenau equation . this scheme is based on the crank-nicolson formulation for time integration and quintic b-spline functions for space integration . the unconditional stability of the present method is proved using von- neumann approach . since we do not know the exact solution...

متن کامل

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

Wavelet Method for Numerical Solution of Wave Equation with Neumann Boundary Conditions

In this paper, we derive a highly accurate numerical method for the solution of one-dimensional wave equation with Neumann boundary conditions. This hyperbolic problem is solved by using semidiscrete approximations. The space direction is discretized by wavelet-Galerkin method and the time variable is discretized by using various classical finite difference schemes. The numerical results show t...

متن کامل

Numerical analysis of Burgers’ equation with uncertain boundary conditions using the stochastic Galerkin method

Burgers’ equation with stochastic initial and boundary conditions is investigated by a polynomial chaos expansion approach where the solution is represented as a series of stochastic, orthogonal polynomials. The analysis of wellposedness for the stochastic Burgers’ equation follows the pattern of that of the deterministic Burgers’ equation. We use dissipation and spatial derivative operators sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2019

ISSN: 2073-8994

DOI: 10.3390/sym11040469